- You are here:
- GT Home
- Home
- List of Available Research Projects
The project aims at further testing a new approach, the maximum entropy production (MEP) model of surface heat fluxes (Wang et al, 2014), for modeling and monitoring air-sea exchange of water and heat air-sea water and heat.
This study seeks to develop a location independent scalable framework for Community based Sustainable Coastal Area Resilience Planning (C-SCARP).
The data-driven framework is adaptable to other locations and/or scales in the future. The proposed C-SCARP framework will make use of an adapted and expanded version of the GoldSET suite of decision support tools that incorporates multi-criteria analysis in a sustainability evaluation framework. Three distinct uses of GoldSET are anticipated:
Advection and biological consumption are both important sinks for oil and gas released from natural seeps in the Gulf of Mexico. We will use a combination of stable isotope measurements and high resolution modeling with both passive and positively buoyant tracers to study the interaction between physical and biological processes in distributing and transporting the carbon released from natural seeps. We will focus on three major seep fields in the Northern Gulf with different water depths –GC185 (ca. 400 m), GC600 (ca. 1200 m), and GC767 (ca.
The project aims at further testing a new approach, the maximum entropy production (MEP) model of surface heat fluxes (Wang et al, 2014), for modeling and monitoring air-sea exchange of water and heat air-sea water and heat.
In coastal areas, data are very sparsely available for flow and wave conditions during storm events due, in part, to the logistical challenge of deploying instruments in such conditions. The questions proposed are centered around the strength and consequences of the flow conditions during storm events and the influence of vegetation on mitigating the effects.
Advection and biological consumption are both important sinks for oil and gas released from natural seeps in the Gulf of Mexico. We will use a combination of stable isotope measurements and high resolution modeling with both passive and positively buoyant tracers to study the interaction between physical and biological processes in distributing and transporting the carbon released from natural seeps. We will focus on three major seep fields in the Northern Gulf with different water depths –GC185 (ca. 400 m), GC600 (ca. 1200 m), and GC767 (ca.
Nonlinear dispersive wave groups or packets occur in a wide range of natural systems, exhibiting complex behaviors especially in focal zones where there is rapid wave energy concentration and possible wave breaking. In the presence of dispersion, pure plane waves of different wavelengths and directions traveling within a medium have different propagation velocities. Important classes of geophysical wave systems include surface gravity waves, oceanic and atmospheric internal waves, and seismic waves.
CO2 emission will continue exaggerating, as fossil fuels will most likely remain the major source of energy in next couple decades. The increased carbon in the atmosphere moves into marine ecosystems, making the world’s oceans more acidic. The rate of ocean acidification (OA) today is faster than any time in the past 300 million years.
Many densely populated coastal areas around the world are low lying and susceptible to relative sea level rise (SLR) associated with climate change, land level subsidence or tectonic subsidence. Coastal defense structures have been constructed as barriers to certain design storm surge, storm wave or tsunami heights. Typically even without SLR the design criteria change over time as hazards get reanalyzed or remodeled. The decrease in risk reduction due to relative SLR and the performance of existing defense barriers under loading conditions beyond the design need to be determined.
The recently completed resource assessment for ocean current energy (Haas et al. 2013) utilized fairly simplistic analytical methods to estimate the extractable energy from the Gulf Stream System as well as to analyze the relative impacts of large scale energy extraction. This level of analysis can be considered to be accurate to an order of magnitude and only provides an idea on the overall trends of the impacts of extraction. Much higher resolution modeling is required to accurately determine the overall impacts of extraction for both localized and far field effects.